Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
Front Med (Lausanne) ; 9: 761655, 2022.
Article in English | MEDLINE | ID: covidwho-1731793

ABSTRACT

INTRODUCTION: Vaccines have emerged as the most effective tool in the fight against COVID-19. Governments all over the world have rolled out the COVID-19 vaccine program for their populations. Oxford-AstraZeneca COVID-19 vaccine (COVISHIELD™) is widely used in India. A large number of Indian people have been consuming various traditional medicines in the hope of better protection against COVID-19 infection. Several studies have reported immunological benefits of Withania somnifera (Ashwagandha) and its potential as a vaccine adjuvant. We propose to study the safety, immunogenicity and clinical protection offered by a 6-month regimen of Ashwagandha in participants who volunteer to be vaccinated against COVID-19 (COVISHIELDTM) in the ongoing national program of vaccination. METHODS AND ANALYSIS: We designed a prospective, randomized, double-blind, parallel-group, placebo-controlled, two-arm, exploratory study on healthy volunteers receiving the COVISHIELDTM vaccine. The administration of Ashwagandha will begin within 7 days of the first or second dose of COVISHIELDTM. Primary outcome measure is immunogenicity as measured by SARS-CoV-2 spike (S1) and RBD-specific IgG antibody titres. Secondary outcome measures are safety, protective immune response and quality of life measures. All adverse events will be monitored at each time throughout the study. Participants will be tracked on a daily basis with a user-friendly mobile phone application. Following power calculation 600 participants will be recruited per arm to demonstrate superiority by a margin of 7% with 80% power. Study duration is 28 weeks with interim analysis at the end of 12 weeks. ETHICS AND DISSEMINATION: Ethics approval was obtained through the Central and Institutional Ethics Committees. Participant recruitment commenced in December 2021. Results will be presented in conferences and published in preprints followed by peer-reviewed medical journals. CLINICAL TRIAL REGISTRATION: [www.ClinicalTrials.gov], identifier [CTRI/2021/06/034496].

4.
JAC Antimicrob Resist ; 3(2): dlab038, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1288048

ABSTRACT

The COVID-19 pandemic presents a serious public health challenge in all countries. However, repercussions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on future global health are still being investigated, including the pandemic's potential effect on the emergence and spread of global antimicrobial resistance (AMR). Critically ill COVID-19 patients may develop severe complications, which may predispose patients to infection with nosocomial bacterial and/or fungal pathogens, requiring the extensive use of antibiotics. However, antibiotics may also be inappropriately used in milder cases of COVID-19 infection. Further, concerns such as increased biocide use, antimicrobial stewardship/infection control, AMR awareness, the need for diagnostics (including rapid and point-of-care diagnostics) and the usefulness of vaccination could all be components shaping the influence of the COVID-19 pandemic. In this publication, the authors present a brief overview of the COVID-19 pandemic and associated issues that could influence the pandemic's effect on global AMR.

5.
Am J Trop Med Hyg ; 105(1): 66-72, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232647

ABSTRACT

Clinical and epidemiological characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are now widely available, but there are few data regarding longitudinal serology in large cohorts, particularly those from low-income and middle-income countries. We established an ongoing prospective cohort of 3,840 SARS-CoV-2-positive individuals according to RT-PCR in the Delhi-National Capital Region of India to document clinical and immunological characteristics during illness and convalescence. The immunoglobulin G (IgG) responses to the receptor binding domain (RBD) and nucleocapsid were assessed at 0 to 7 days, 10 to 28 days, and 6 to 10 weeks after infection. The clinical predictors of seroconversion were identified by multivariable regression analysis. The seroconversion rates during the postinfection windows of 0 to 7 days, 10 to 28 days, and 6 to 10 weeks were 46%, 84.7%, and 85.3%, respectively (N = 743). The proportion with a serological response increased with the severity of coronavirus disease 2019 (COVID-19). All participants with severe disease, 89.6% with mild to moderate infection, and 77.3% of asymptomatic participants had IgG antibodies to the RBD antigen. The threshold values for the nasopharyngeal viral RNA RT-PCR of a subset of asymptomatic and symptomatic seroconverters were comparable (P = 0.48) to those of nonseroconverters (P = 0.16) (N = 169). This is the first report of longitudinal humoral immune responses to SARS-CoV-2 over a period of 10 weeks in South Asia. The low seropositivity of asymptomatic participants and differences between assays highlight the importance of contextualizing the understanding of population serosurveys.


Subject(s)
COVID-19/blood , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunoglobulin G/blood , India/epidemiology , Infant , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2/immunology , Seroconversion , Young Adult
6.
Front Cell Infect Microbiol ; 11: 596201, 2021.
Article in English | MEDLINE | ID: covidwho-1190293

ABSTRACT

COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.


Subject(s)
COVID-19/mortality , Global Health , Pandemics , China/epidemiology , Humans , SARS-CoV-2
7.
J Clin Virol ; 131: 104609, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-726611

ABSTRACT

INTRODUCTION: IgG immunoassays have been developed and used widely for clinical samples and serosurveys for SARS-CoV2, with most detecting antibodies against the spike/receptor-binding-domain or nucleocapsid. Limited information is available on comparative evaluation of IgG immunoassays against a clinical reference standard, i.e., RT-PCR positivity with >20 days of illness. This study addresses the need for comparing clinical performance of IgG immunoassays with respect to this alternate reference standard. METHODS: We compared the performance of three immunoassays, an in-house RBD assay, and two commercial assays, the Diasorin LIAISON SARS-CoV-2 S1/S1 IgG CLIA which detects antibodies against S1/S2 domains of the Spike protein and the Zydus Kavach assay based on inactivated virus using a well-characterized panel of sera. 379 sera and plasma samples from RTPCR positive individuals >20 days of illness in symptomatic or RT-PCR positivity in asymptomatic individuals and 184 samples collected prior to 2019 were used for assay evaluation. RESULTS: The sensitivity of the assays were 84.7 (95 %CI 80.6-88.1), 82.6 (95 %CI 78.3-86.2) and 75.7 (95 %CI 71.0-79.9) respectively for RBD, LIAISON and Kavach. Kavach and the in-house RBD ELISA showed a specificity of 99.5 % and 100 %, respectively. The RBD and LIAISON (S1/S2) assays showed high agreement (94.7 %; 95 %CI: 92.0, 96.6) and were able to correctly identify more positive sera/plasma than Kavach. CONCLUSION: Independent comparisons support the evaluation of performance characteristics of immunoassays. All three assays are suitable for serosurveillance studies, but in low prevalence sites, estimation of exposure may require adjustment based on our findings.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronavirus Infections/immunology , Immunoassay/methods , Immunoglobulin G/blood , Pneumonia, Viral/immunology , Automation, Laboratory , Betacoronavirus , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Humans , India , Longitudinal Studies , Luminescent Measurements , Pandemics , Prospective Studies , Reagent Kits, Diagnostic , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL